3.590 \(\int \frac{\cos ^{\frac{3}{2}}(c+d x)}{(a+b \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=163 \[ \frac{\left (a^2-2 b^2\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 d \left (a^2-b^2\right )}-\frac{a E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b d \left (a^2-b^2\right )}-\frac{a \left (a^2-3 b^2\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 d (a-b) (a+b)^2}+\frac{a \sin (c+d x) \sqrt{\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))} \]

[Out]

-((a*EllipticE[(c + d*x)/2, 2])/(b*(a^2 - b^2)*d)) + ((a^2 - 2*b^2)*EllipticF[(c + d*x)/2, 2])/(b^2*(a^2 - b^2
)*d) - (a*(a^2 - 3*b^2)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/((a - b)*b^2*(a + b)^2*d) + (a*Sqrt[Cos[c +
 d*x]]*Sin[c + d*x])/((a^2 - b^2)*d*(a + b*Cos[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.384421, antiderivative size = 163, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {2799, 3059, 2639, 3002, 2641, 2805} \[ \frac{\left (a^2-2 b^2\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 d \left (a^2-b^2\right )}-\frac{a E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b d \left (a^2-b^2\right )}-\frac{a \left (a^2-3 b^2\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 d (a-b) (a+b)^2}+\frac{a \sin (c+d x) \sqrt{\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(3/2)/(a + b*Cos[c + d*x])^2,x]

[Out]

-((a*EllipticE[(c + d*x)/2, 2])/(b*(a^2 - b^2)*d)) + ((a^2 - 2*b^2)*EllipticF[(c + d*x)/2, 2])/(b^2*(a^2 - b^2
)*d) - (a*(a^2 - 3*b^2)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/((a - b)*b^2*(a + b)^2*d) + (a*Sqrt[Cos[c +
 d*x]]*Sin[c + d*x])/((a^2 - b^2)*d*(a + b*Cos[c + d*x]))

Rule 2799

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -S
imp[((b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 1))/(f*(m + 1)*(a^2 - b^2
)), x] + Dist[1/((m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)*Simp[c*(a
*c - b*d)*(m + 1) + d*(b*c - a*d)*(n - 1) + (d*(a*c - b*d)*(m + 1) - c*(b*c - a*d)*(m + 2))*Sin[e + f*x] - d*(
b*c - a*d)*(m + n + 1)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[
a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && LtQ[1, n, 2] && IntegersQ[2*m, 2*n]

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{\cos ^{\frac{3}{2}}(c+d x)}{(a+b \cos (c+d x))^2} \, dx &=\frac{a \sqrt{\cos (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac{\int \frac{-\frac{a}{2}+b \cos (c+d x)+\frac{1}{2} a \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{-a^2+b^2}\\ &=\frac{a \sqrt{\cos (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac{\int \frac{\frac{a b}{2}+\frac{1}{2} \left (a^2-2 b^2\right ) \cos (c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{b \left (a^2-b^2\right )}-\frac{a \int \sqrt{\cos (c+d x)} \, dx}{2 b \left (a^2-b^2\right )}\\ &=-\frac{a E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b \left (a^2-b^2\right ) d}+\frac{a \sqrt{\cos (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac{\left (a \left (a^2-3 b^2\right )\right ) \int \frac{1}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{2 b^2 \left (a^2-b^2\right )}+\frac{\left (a^2-2 b^2\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{2 b^2 \left (a^2-b^2\right )}\\ &=-\frac{a E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b \left (a^2-b^2\right ) d}+\frac{\left (a^2-2 b^2\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 \left (a^2-b^2\right ) d}-\frac{a \left (a^2-3 b^2\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{(a-b) b^2 (a+b)^2 d}+\frac{a \sqrt{\cos (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \cos (c+d x))}\\ \end{align*}

Mathematica [A]  time = 3.08906, size = 198, normalized size = 1.21 \[ \frac{\frac{4 a \sin (c+d x) \sqrt{\cos (c+d x)}}{\left (a^2-b^2\right ) (a+b \cos (c+d x))}-\frac{\frac{2 \sin (c+d x) \left (\left (2 a^2-b^2\right ) \Pi \left (-\frac{b}{a};\left .-\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) F\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )-2 a b E\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )\right )}{b^2 \sqrt{\sin ^2(c+d x)}}-\frac{10 a \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}+8 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{(a-b) (a+b)}}{4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(3/2)/(a + b*Cos[c + d*x])^2,x]

[Out]

((4*a*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/((a^2 - b^2)*(a + b*Cos[c + d*x])) - (8*EllipticF[(c + d*x)/2, 2] - (10
*a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) + (2*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] +
 2*a*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (2*a^2 - b^2)*EllipticPi[-(b/a), -ArcSin[Sqrt[Cos[c +
 d*x]]], -1])*Sin[c + d*x])/(b^2*Sqrt[Sin[c + d*x]^2]))/((a - b)*(a + b)))/(4*d)

________________________________________________________________________________________

Maple [B]  time = 7.099, size = 794, normalized size = 4.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^2,x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x
+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+
8/b*a/(-2*a*b+2*b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+s
in(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+2*a^2/b^2*(-1/a*b^2/(a^2-b^2)*cos
(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x+1/2*c)^2+a-b)-1/2/a/(a+b
)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2
)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1/2*b/(a^2-b^2)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1
/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/
2*b/(a^2-b^2)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/
2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3*a/(a^2-b^2)/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)
^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(co
s(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+1/a/(a^2-b^2)/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2
*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b
/(a-b),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{\frac{3}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^(3/2)/(b*cos(d*x + c) + a)^2, x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)/(a+b*cos(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{\frac{3}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^(3/2)/(b*cos(d*x + c) + a)^2, x)